Introduction aux variétés différentielles
Jacques Lafontaine
Availability:
Ebook in PDF format. Available for immediate download after we receive your order
Also available in EPUB format
Ebook in PDF format. Available for immediate download after we receive your order
Also available in EPUB format
Publisher:
EDP sciences
EDP sciences
DRM:
Watermark
Watermark
Publication Year:
2013
2013
ISBN-13:
9782759801206
Description:
Ce livre scientifique est une initiation aux variétés différentielles, préalable à des enseignements plus spécialisés. Le lecteur devra posséder une compétence sur le calcul différentiel dans les espaces euclidiens. Sont abordées les principales notions de géométrie différentielle : variétés différentielles, espaces tangent et cotangent, champs de vecteurs, formes différentielles. De nombreux exemples sont traités en détail. Cet ensemble constitue une introduction aux groupes de Lie. Il est illustré par les éléments de théorie du degré et de cohomologie.
Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. Il propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume.
Le succès de la première édition notamment auprès des étudiants a motivé les améliorations de cette édition. Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre.
Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires. Les physiciens sont également concernés.
Introduction aux variétés différentielles a pour objectif d'être un ouvrage de base. Il propose des exercices classiques pour l'étudiant et le débutant en la matière, d'autres plus délicats pour l'enseignant, le chercheur ou l'étudiant de niveau plus avancé. Les solutions d'un bon nombre d'entre eux sont données en fin de volume.
Le succès de la première édition notamment auprès des étudiants a motivé les améliorations de cette édition. Un chapitre nouveau est proposé sur les caractéristiques d'Euler-Poincaré et le théorème de Gauss-Bonnet. Cet ouvrage est un pap-ebook : un site web corrélé propose des compléments et des annexes. Le lecteur peut ainsi s'appuyer sur des rappels, des exercices, des approfondissements sur le site compagnon présenté au début du livre.
Destiné aux étudiants de master et des préparations à l'agrégation, aux universitaires, aux professeurs des lycées et des classes préparatoires. Les physiciens sont également concernés.
Ebook Preview