Petit traité d'intégration
Jean-Yves Briend
Disponibilité:
Ebook en format PDF. Disponible pour téléchargement immédiat après la commande.
Aussi disponible en format EPUB
Ebook en format PDF. Disponible pour téléchargement immédiat après la commande.
Aussi disponible en format EPUB
Éditeur:
EDP sciences
EDP sciences
Protection:
Filigrane
Filigrane
Année de parution:
2014
2014
ISBN-13:
9782759816910
Description:
Ce Petit traité d’intégration développe une approche originale de l’intégrale. Cette approche, que l’on pourrait qualifier de globale, est due aux deux mathématiciens Jaroslaw Kurzweil et Ralph Henstock.
L’enseignement de l’intégration se fait d’ordinaire en deux temps. On débute en proposant des approximations de l’aire située sous le graphe de la fonction sous la forme de sommes de Riemann, ce qui est bien adapté au calcul différentiel et intégral portant sur des fonctions régulières. On présente ensuite l’intégrale de Lebesgue en lien avec la théorie de la mesure.
L’approche de Kurzweil et Henstock est proche de celle de Riemann, à cela près que le pas des subdivisions de l’intervalle pour le calcul de l’aire peut ne pas être constant. L’intérêt de cette méthode est de contenir la théorie de Lebesgue et d’être optimale pour le calcul différentiel.
Ce livre concerne au premier chef les étudiants de mathématiques de tous les cycles (licence, master, préparation aux concours de l’enseignement…). Il intéressera également les enseignants de mathématiques ou de physique et, plus généralement, les ingénieurs et scientifiques qui font usage de la théorie de l’intégration.
L’enseignement de l’intégration se fait d’ordinaire en deux temps. On débute en proposant des approximations de l’aire située sous le graphe de la fonction sous la forme de sommes de Riemann, ce qui est bien adapté au calcul différentiel et intégral portant sur des fonctions régulières. On présente ensuite l’intégrale de Lebesgue en lien avec la théorie de la mesure.
L’approche de Kurzweil et Henstock est proche de celle de Riemann, à cela près que le pas des subdivisions de l’intervalle pour le calcul de l’aire peut ne pas être constant. L’intérêt de cette méthode est de contenir la théorie de Lebesgue et d’être optimale pour le calcul différentiel.
Ce livre concerne au premier chef les étudiants de mathématiques de tous les cycles (licence, master, préparation aux concours de l’enseignement…). Il intéressera également les enseignants de mathématiques ou de physique et, plus généralement, les ingénieurs et scientifiques qui font usage de la théorie de l’intégration.
Aperçu du livre